Real-time data sharing critical to “Smart Aging” and collaborative health care

Posted on 25th February 2015 in health, Internet of Things, open data, smart aging

It’s hard to describe to someone who hasn’t encountered the phenomenon first hand, but there’s something really exciting (and perhaps transformative) when data is shared rather than hoarded. When data becomes the focus of discussions, different perspectives reveal different aspects of the data that even the brightest person couldn’t discover working in isolation.

That transformative aspect is very exciting when it involves health care.

I’ve written before about the life-saving discoveries when doctors and data scientists from Toronto’s Hospital for Sick Children and IBM collaboratively analyzed data from newborns in the NICU and discovered early signs of infections that allowed them to begin treatment a day before there was any outward manifestation of the infection. Now, the always-informative SAP Innovation blog (I don’t just say that because they’re kind enough to reprint many of my posts: I find it an eclectic and consistently informative source of information on all things dealing with innovation!) has an interesting piece about how Dartmouth Hitchcock is sharing real-time data with patients considering knee-replacement surgery.

In some cases, that data leads patients to decide — sigh of relief — their condition doesn’t warrant surgery at this point, while it confirms the need for others.  In both cases, there’s a subtle but important shift in the doctor-patient relationship that’s at the heart of my proposed “Smart Aging” paradigm shift: away from the omnipotent doctor telling the patient what’s needed and instead empowering the patient to be an active partner in his or her care.

The key is using the data to predict outcomes:

“‘Prior to anyone ever getting surgery, we want to try to predict how they’re going to do,’ Dartmouth-Hitchcock orthopedic surgeon Michael Sparks said in an SAP video. ‘But we’ve never had that missing tool, which is real-time data.’

“D-H recently began using real-time data analytics and predictive technologies to help people suffering from chronic knee pain to choose wisely and improve their outcomes. ‘It is actually a partnership to help people get ‘through this,’ Sparks said. ‘And it’s the analysis of data that adds to their ability to make a decision.’”

For the first time, the patient’s choice really becomes informed consent.

comments: 0 » tags: , , ,

IFTTT DO apps: neat extension of my fav #IoT crowdsourcing tool!

Have I told you lately how much I love IFTTT? Of course!  As I’ve said, I think they are a phenomenal example of my IoT “Essential Truth” question: who else can use this data?

IFTTT_DO_buttonNow, they’ve come up with 3 new apps, the “DO button,” “DO camera,” and “DO Note,” that make this great tool even more versatile!

With a DO “recipe,” you simply tap on the appropriate app, and the “recipe” runs. Presto! Change-o!

As a consultant who must bill for his time, I particularly like the one that lets you “Track Your Work hours” on Google Drive, but you’re sure to find your own favorites in categories such as play, work, home, families, and essentials. Some are just fun, and some will increase your productivity or help manage your household more easily (hmm: not sure where “post a note to your dog’s timeline” fits in (aside to my sons: feel free to “send notes to your data via email”.  If past experience is any indication, there should be many, many more helpful “Do” recipes as soon as users are familiar with how to create them.

As I’ve said before, it’s no reflection on the talented engineers at HUE, NEST, et. al., but there’s simply no way they could possibly visualize all the ways that their devices could be used and/or combined with others, and that’s why IFTTT, by adding the crowdsourcing component and democratizing data, is so important to speeding the IoT’s deployment.

IBM picks for IoT trends to watch this year emphasize privacy & security

Last month Bill Chamberlin, the principal analyst for Emerging Tech Trends and Horizon Watch Community Leader for IBM Market Development (hmmm, must have an oversized biz card..) published a list of 20 IoT trends to watch this year that I think provide a pretty good checklist for evaluating what promises to be an important period in which the IoT becomes more mainstream.

It’s interesting to me, especially in light of my recent focus on the topics (and I’ll blog on the recent FTC report on the issue in several days), that he put privacy and security number one on the list, commenting that “Trust and authentication become critical across all elements of the IoT, including devices, the networks, the cloud and software apps.” Amen.

Most of the rest of the list was no surprise, with standards, hardware, software, and edge analytics rounding out the top five (even though it hasn’t gotten a lot of attention, I agree edge analytics are going to be crucial as the volume of sensor data increases dramatically: why pass along the vast majority of data, that is probably redundant, to the cloud, vs. just what’s a deviation from the norm and probably more important?).

Two dealing with sensors did strike my eye:

9.  Sensor fusion: Combining data from different sources can improve accuracy. Data from two sensors is better than data from one. Data from lots of sensors is even better.

10.  Sensor hubs: Developers will increasingly experiment with sensor hubs for IoT devices, which will be used to offload tasks from the application processor, cutting down on power consumption and improving battery life in the devices”

Both make a lot of sense.

One was particularly noteworthy in light of my last post, about the Gartner survey showing most companies were ill-prepared to plan and launch IoT strategies: “14.  Chief IoT Officer: Expect more senior level execs to be put in place to build the enterprise-wide IoT strategy.” Couldn’t agree more that this is vital!

Check out the whole list: I think you’ll find it helpful in tracking this year’s major IoT developments.

Gartner study confirms senior managers don’t understand IoT

Posted on 21st February 2015 in Internet of Things, M2M, management, manufacturing, marketing, strategy

The “Managing the Internet of Things Revolution” e-guide I wrote for SAP was aimed at C-level executives. Even though it’s proven popular enough that the company is translating it into several languages, it appears we need to redouble our efforts to Managing_the_Internet_of_Things_Revolutionbuild IoT awareness among executives.

I say that because Gartner has just come out with a survey confirming my suspicions: even though a lot of companies now think the IoT will have a major effect on them, they’re clueless about how to manage it and most have yet to launch major IoT initiatives.

In fact, “many survey respondents felt that the senior levels of their organizations don’t yet have a good understanding of the potential impact of the IoT.” (my emphasis)

 

That’s despite the fact that a key conclusion of my guide was that (even though the IoT is a long way from full maturity) companies can and should begin their IoT strategies and implementation now, because they can already achieve significant savings in operating costs, improve marketing, and create new revenue streams with the current early stage sensors and analytical tools. Getting started will also build their confidence and familiarity with IoT tools and strategy before they begin more dramatic transformational strategies.

Consider these findings from the survey of 463 business and IT leaders:

  • 40% of companies think the IoT will at least bring new short-term revenue and cost reduction opportunities in the next three years — or perhaps even transform them. More than 60% think that will be true over 5 years or more.
  • Fewer than 25% said their company had “established clear business leadership for the IoT,” — even among the companies predicting a significant  – this includes those who said they expect the IoT to have a significant or transformational impact, says Gartner (however, 35% of them came from this group).
  • Yet, few have delegated specific responsibility for IoT strategy and management: “… less than one-quarter of survey respondents has established clear business leadership for the IoT, either in the form of a single organizational unit owning the issue or multiple business units taking ownership of separate IoT efforts.”
  • “attitudes toward the IoT vary widely by industry. For example, board of directors’ understanding of the IoT was rated as particularly weak in government, education, banking and insurance, whereas the communications and services industries scored above-average ratings for senior executive understanding of the IoT.”

Gartner concluded most companies have yet to really create IoT strategies:

“‘The survey confirmed that the IoT is very immature, and many organizations have only just started experimenting with it,’ said Nick Jones, vice president and distinguished analyst at Gartner. ‘Only a small minority have deployed solutions in a production environment. However, the falling costs of networking and processing mean that there are few economic inhibitors to adding sensing and communications to products costing as little as a few tens of dollars. The real challenge of the IoT is less in making products ‘smart’ and more in understanding the business opportunities enabled by smart products and new ecosystems.’ However, a lack of clear business or technical leadership is holding back investment in the technology.” (my emphasis)

In line with my current preoccupation, privacy and security, the survey did show companies are concerned with both issues, as well as with finding talented new staff who understand the IoT and how to benefit from it. According to Steve Kleyhans, Gartner’s research vp:

 “While a single leader for the IoT is not essential, leadership and vision are important, even in the form of several leaders from different business units. We expect that over the next three years, more organizations will establish clear leadership, and more will recognize the value of some form of an IoT center of excellence because of the need to master a wide range of new technologies and skills.”

If you haven’t launched any IoT projects or begun to create a strategy, the writing’s on the wall: get going!


Carpe diem: I take this survey as an omen that there’s a desperate need for When Things Can Talk: profiting from the Internet of Things revolution,” my proposed full-length book on IoT corporate strategy. Let me know if you can suggest a possible publisher!

The #IoT Can Kill You! Got Your Attention? Car Security a Must

The Internet of Things can kill you.

Got your attention? OK, maybe this is the wake-up call the IoT world needs to make certain that privacy and security are baked in, not just afterthoughts.

Markey_IoT_car_reportI’ve blogged before about how privacy and security must be Job 1, but now it’s in the headlines because of a new report by our Mass. Senator, Ed Markey (Political aside: thanks, Ed, for more than 30 years of leadership — frequently as a voice crying in the wilderness — on the policy implications of telecomm!), “Tracking & Hacking: Security & Privacy Gaps Put American Drivers at Risk,” about the dangers of not taking the issues seriously when it comes to smart cars.

I first became concerned about this issue when reading “Look Out, He’s Got an Phone,!” (my personal nominee for all-time most wry IoT headline…), a litany of all sorts of horrific things, such as spoofing the low air-pressure light on your car so you’ll pull over and the Bad Guys can get it would stop dead at 70 mph,  that are proven risks of un-encrypted automotive data.  All too typical was the reaction of Schrader Electronics, which makes the tire sensors:

“Schrader Electronics, the biggest T.P.M.S. manufacturer, publicly scoffed at the Rutgers–South Carolina report. Tracking cars by tire, it said, is ‘not only impractical but nearly impossible.’ T.P.M.S. systems, it maintained, are reliable and safe.

“This is the kind of statement that security analysts regard as an invitation. A year after Schrader’s sneering response, researchers from the University of Washington and the University of California–San Diego were able to ‘spoof’ (fake) the signals from a tire-pressure E.C.U. by hacking an adjacent but entirely different system—the OnStar-type network that monitors the T.P.M.S. for roadside assistance. In a scenario from a techno-thriller, the researchers called the cell phone built into the car network with a message supposedly sent from the tires. ‘It told the car that the tires had 10 p.s.i. when they in fact had 30 p.s.i.,’ team co-leader Tadayoshi Kohno told me—a message equivalent to ‘Stop the car immediately.’ He added, ‘In theory, you could reprogram the car while it is parked, then initiate the program with a transmitter by the freeway. The car drives by, you call the transmitter with your smartphone, it sends the initiation code—bang! The car locks up at 70 miles per hour. You’ve crashed their car without touching it.’”

Hubris: it’ll get you every time….

So now Senator Markey lays out the full scope of this issue, and it should scare the daylights out of you — and, hopefully, Detroit! The report is compiled on responses by 16 car companies (BMW, Chrysler, Ford, General Motors, Honda, Hyundai, Jaguar Land Rover, Mazda, Mercedes-Benz, Mitsubishi, Nissan, Porsche, Subaru, Toyota, Volkswagen (with Audi), and Volvo — hmm: one that didn’t respond was Tesla, which I suspect [just a hunch] really has paid attention to this issue because of its techno leadership) to letters Markey sent in late 2013. Here are the damning highlights from his report:

“1. Nearly 100% of cars on the market include wireless technologies that could pose vulnerabilities to hacking or privacy intrusions.

2. Most automobile manufacturers were unaware of or unable to report on past hacking incidents.

3. Security measures to prevent remote access to vehicle electronics are inconsistent and haphazard across all automobile manufacturers, and many manufacturers did not seem to understand the questions posed by Senator Markey.

4. Only two automobile manufacturers were able to describe any capabilities to diagnose or meaningfully respond to an infiltration in real-time, and most say they rely on technologies that cannot be used for this purpose at all. (my emphasis)

5. Automobile manufacturers collect large amounts of data on driving history and vehicle performance.

6. A majority of automakers offer technologies that collect and wirelessly transmit driving history data to data centers, including third-party data centers, and most do not describe effective means to secure the data.

7. Manufacturers use personal vehicle data in various ways, often vaguely to “improve the customer experience” and usually involving third parties, and retention policies – how long they store information about drivers – vary considerably among manufacturers.

8. Customers are often not explicitly made aware of data collection and, when they are, they often cannot opt out without disabling valuable features, such as navigation.”

In short, the auto industry collects a lot of information about us, and doesn’t have a clue how to manage or protect it.

I’ve repeatedly warned before that one of the issues technologists don’t really understand and/or scoff at, is public fears about privacy and security. Based on my prior work in crisis management, that can be costly — or fatal.

This report should serve as a bit of electroshock therapy to get them (and here I’m referring not just to auto makers but all IoT technologists: it’s called guilt by association, and most people tend to confabulate fears, not discriminate between them. Unless everyone in IoT takes privacy and security seriously, everyone may suffer the result [see below]) to realize that it’s not OK, as one of the speakers at the Wearables + Things conference said, that “we’ll get to privacy and security later.” It’s got to be a priority from the get-go (more about this in a forthcoming post, where I’ll discuss the recent FTC report on the issue).

I’ve got enough to worry about behind the wheel, since the North American Deer Alliance is out to get me. Don’t make me worry about false tire pressure readings.


PS: there’s another important issue here that may be obscured: the very connectedness that is such an important aspect of the IoT. Remember that the researchers spoofed the T.P.M.S. system not through a frontal assault, but by attacking the roadside assistance system? It’s like the way Target’s computers were hacked via a small company doing HVAC maintenance. Moral of the story? No IoT system is safe unless all the ones linking to it are safe.  For want of a nail … the kingdom was lost!

I Have Seen the Future of Agriculture & It is the IoT (Grove Labs)

Agriculture is a passion of mine, partially because of environmental concerns, and also because I love veggie gardening. There has been an encouraging trend in the US recently, with the advent of Community Supported Agriculture (CSA) and the localvore movement. However, that’s counterbalanced by the terrible continuing California drought, and the sobering realization that, worldwide, there are more than 805 million who are undernourished. Clearly, we need to produce more food — and do it much more efficiently and in line with natural principles.

Grove Labs Aquaponics system

That’s why I’m so excited about the new Grove Labs system being developed in, of all places, Somerville MA (which has become a start-up haven for ag-related companies through the Greentown Labs incubator. They include Freight Farms [ I will blog about them later..], which is pursuing a similar closed-loop approach on a larger scale, and Apitronics, which presented at one of our Boston IoT Meetups last year.).

It was developed by two young MIT grads, Jamie Byron (who became “obsessed” with the problems of current worldwide agriculture while on an internship) and Gabe Blanchet, who created the primitive precursor of the aquaponics system in their frat house. Now, in its beta testing form (sign up ASAP if you live in the Hub to buy a prototype!), the “Grove” is an integrated ecosystem attractive enough to be placed in your kitchen.

According to The Verge  (which pointed out that dope growers’ experience with hydroponics may have helped Byron and Blanchet, LOL!):

“The Grove system looks like a 6-foot-tall wood cabinet with four LED-lit boxes for plants. Three are smaller, for leafy greens and herbs, and one is larger, for things like tomatoes or peas. On the bottom left is an aquarium whose fish provide fertilizer for the plants. The fish are what make the system ‘aquaponic,’ a particularly organic variant on traditional hydroponics.

….” ‘Essentially we took the philosophy and biology of an actual ecosystem and shrunk it down and put it in a bookshelf tower,’ Blanchet says. The fish produce ammonia in their waste, which gets pumped to the plants, where bacteria convert the ammonia to nitrate. The plants consume the nitrate, filtering the water, which gets returned to the fish. ‘If you keep the system running optimally you can grow plants faster than you can outside,’ says Blanchet.”

A critical component that qualifies the system as an IoT one is the “Grove” app, which will tell owners important information about lighting schedules, when to add nutrients, etc. The all-important sensors will provide critical real-time data about growing conditions and what’s needed.

The Grove isn’t a panacea for world hunger: for one thing, it’s pricey ($2600), although economies of scale when the company is in full swing may bring that down. It also requires involvement by the owner: you can’t just sit there and admire how things grow. You’ll need to actively monitor the app and do routine maintenance. The LED lighting system, as efficient as it may be, won’t work in remote, poor areas where there’s no electricity (but that might come from an nearby PV panel!

Nonetheless, I can see the grove playing a growing (groan, sorry for the pun..) role in meeting the world’s food needs, and, best of all, doing so in a way that capitalizes on one of my key beliefs about the IoT, that it will bring about an era of unprecented precision in use of raw materials, manufacturing, whatever, because of real-time monitoring, and, increasingly, M2M systems where a sensor reading on one device will trigger operation of another. Large-scale farming is also getting more precise due to systems such as John Deere’s FarmSight, so count agriculture as yet another industry that will be revolutionized through the IoT.


The Grove Labs approach really resonated with me because I’ve been using two 8′ x 4′ 30″ high modules for my own veggies for the last twenty years, planted according to engineer/gardener Mel Bartholomew’s great “Square Foot Gardening” system, with varying levels of success. I had grand visions of manufacturing modules from recycled plastics and adding greenhouse-fabric domes to extend the season, and an app to remind owners of when to plant and fertilize but never followed through, so I really admire those who did, and the way they’re incorporating IoT technology.

New Alchemy’s Institute’s “Ark” (in rear)

When I contacted the co-founders, they were unaware that they stand on the shoulders of giants who have developed a natural systems-based approach to agriculture right here in the Bay State, especially John Todd, who (I believe) pioneered the approach with his wonderful New Alchemy Institute on the Cape, where he methodically added new elements — plexiglas water storage, tilapia, etc. — to the passive-solar “Ark” until he had a balanced, self-sustaining system.  John, who has since gone on to develop great natural-systems based wastewater treatment facilities, had a young apprentice, Greg Watson, who went on to become the Commonwealth’s incredibly innovative ag commissioner.

Oh well, it appears these guys have more than reinvented the wheel! Good luck to them.

“Enchanted Objects” — adding delight to the IoT formula

Posted on 21st January 2015 in design, Essential Truths, Internet of Things, marketing, smart home

For good reason, most discussions of opportunities with the Internet of Things focus on the potential to improve businesses’ operating efficiency or creating new revenue streams.

But what if the IoT could also bring out the hidden 6-yr. old in each of us? What if it could allow us to invent — enchanted objects?

That’s the premise of IoT polymath David Rose’s Enchanted Objects: Design, Human Desire, and the Internet of Things.

Enchanted Objects: Design, Human Desire, and the Internet of Things

Rose is both a stalwart of the MIT Media Lab and a pioneering, serial IoT entrepreneur. Oh, and he’s got an impish grin that shows you he is still as delighted at tinkering with things as he was as a little boy in his grandfather’s workshop:

“Grandfather’s tools were constructed and used with a respect for human capabilities and preferences. They fit human bodies and minds. They were a pleasure to work with and to display. They made us feel powerful, more skilled and capable than we were without them. They hung or nestled quietly, each in its place, and never made us feel stupid or overwhelmed. They were, in a word, enchanting.”

Rose fears that’s not the path we’re heading down with most current techno-products, dismissing them as “cold, black slabs … [resulting in a ] colder, more isolated, less humane world. Perhaps it is more efficient, but we are less happy.”  Yea!

By contrast, enchanted objects resonate with our deepest desires:

“The experiences that do enchant us reach into our hearts and souls. They come from the exotic place of  ‘once upon a time.’ They help us realize fundamental human desires. The fantastic technologies we have invented over the centuries , the ones of ancient tales and science fiction, enable us to do things that human beings earnestly want to do but cannot do without a little (or a lot) of help from technology. They make it possible to fly, communicate without words, be invisible, live forever, withstand powerful forces, protect ourselves from any harm, see farther and travel faster than the greatest athletes. They are tools that make us incredible, supercapable versions of ourselves. These are the visions and stories of our most beloved authors of fiction and fantasy — Tolkien and C. S. Lewis and J. K. Rowling and the Grimms — and the realities of fantastic characters such as Cinderella, Dick Tracy, James Bond, Superman, and Wonder Woman. The designers creating enchanted objects must, therefore, think of themselves as something more than manipulators of materials and masters of form. They must think beyond pixels, connectivity, miniaturization , and the cloud. Our training may be as engineers and scientists, but we must also see ourselves as wizards and artists, enchanters and storytellers, psychologists and behaviorists.”(my emphasis).

Rose discusses a number of the products he’s designed, such as the Ambient Orb, which can be hacked to unobtrusively (the physiological phenomenon that makes them work is called “pre-attentive processing” in case you’re looking for a term to throw around at a cocktail party…) display all sorts of information, from stock market trends to energy consumption and the Ambient Umbrella, whose handle glows if rain is predicted (that one hasn’t been a big success, which I predicted — it’s as easy to lose an expensive, “smart” umbrella as a $10 one. I prefer the IFTTT recipe that has your HUE lights blink blue if rain is predicted, reminding you to take your utterly conventional, cheap umbrella…), as well as one of my favorites, the Vitality Glow Cap, which can reduce the billions in wasted medical spending attributable to people not taking their prescriptions.

Skype Cabinet

And then there’s one that every child or grandparent will love, the Skype Cabinet, a square that sits in your living room, and, when the door is opened, shazaam, there is your grandchild or grandparent, instantly connected with you via Skype. Enchantment indeed!

However, the real meat of the book is his methodology for those of us to whom enchantment doesn’t come as naturally. First, Rose lists seven basic human drives that designers should try to satisfy: omniscience, telepathy (human-to-human communication), safekeeping, immortality, teleportation (that’s high on my personal list after my recent up-close-and-personal encounters with rogue deer.), and expression.

Then Rose explains how technology, especially sensors, will allow meeting these desires through products that sense their surroundings and can interact with us.  In terms of my IoT “Essential Truths,” I’d classify enchanted objects as exemplifying “What Can You Do Now That You Couldn’t Do Before,” because we really couldn’t interact with products in the past.  Other examples in this category that I’ve cited before range from the WeMo switches that helped me make peace with my wife and the life-saving Tell-Spec that lets you find food allergies.

Other thought-provoking sections of the book include “Seven Abilities of Enchantment,  “Five Steps on the Ladder of Enchantment,” and “Six Future Fantasies,” the latter of which is must reading for product designers and would-be entrepreneurs who want to come up with fundamentally new products that will exploit the IoT’s full potential for transformation.

The other day I finally met with Mahira Kalim, the SAP IoT marketing director who whipped my thinking into shape for the “Managing the Internet of Things Revolution” i-guide.  She asked me for examples of the kind of radical transformation through the IoT that are already in existence.  I suspect that some of Rose’s inventions fall into that category, but, more important, Enchanted Objects provides the roadmap and checklist for those who want to create the next ones!  Get it, devour it, and profit from it!

Management Challenge: Lifeguards in the IoT Data Lake

In their Harvard Business Review November cover story, How Smart, Connected Products Are Transforming Competition, PTC CEO Jim Heppelmann and Professor Michael Porter make a critical strategic point about the Internet of Things that’s obscured by just focusing on IoT technology: “…What makes smart, connected products fundamentally different is not the internet, but the changing nature of the “things.”

In the past, “things” were largely inscrutable. We couldn’t peer inside massive assembly line machinery or inside cars once they left the factory, forcing companies to base much of both strategy and daily operations on inferences about these things and their behavior from limited data (data which was also often gathered only after the fact).

Now that lack of information is being removed. The Internet of Things creates two unprecedented opportunities regarding data about things:

  • data will be available instantly, as it is generated by the things
  • it can also be shared instantly by everyone who needs it.

This real-time knowledge of things presents both real opportunities and significant management challenges.

Each opportunity carries with it the challenge of crafting new policies on how to manage access to the vast new amounts of data and the forms in which it can be accessed.

For example: with the Internet of Things we will be able to bring about optimal manufacturing efficiency as well as unprecedented integration of supply chains and distribution networks. Why? Because we will now be able to “see” inside assembly line machinery, and the various parts of the assembly line will be able to automatically regulate each other without human intervention (M2M) to optimize each other’s efficiency, and/or workers will be able to fine-tune their operation based on this data.

Equally important, because of the second new opportunity, the exact same assembly line data can also be shared in real time with supply chain and distribution network partners. Each of them can use the data to trigger their own processes to optimize their efficiency and integration with the factory and its production schedule.

But that possibility also creates a challenge for management.

When data was hard to get, limited in scope, and largely gathered historically rather than in the moment, what data was available flowed in a linear, top-down fashion. Senior management had first access, then they passed on to individual departments only what they decided was relevant. Departments had no chance to simultaneously examine the raw data and have round-table discussions of its significance and improve decision-making. Everything was sequential. Relevant real-time data that they could use to do their jobs better almost never reached workers on the factory floor.

That all potentially changes with the IoT – but will it, or will the old tight control of data remain?

Managers must learn to ask a new question that’s so contrary to old top-down control of information: who else can use this data?

To answer that question they will have to consider the concept of a “data lake” created by the IoT.

“In broad terms, data lakes are marketed as enterprise wide data management platforms for analyzing disparate sources of data in its native format,” Nick Heudecker, research director at Gartner, says. “The idea is simple: instead of placing data in a purpose-built data store, you move it into a data lake in its original format. This eliminates the upfront costs of data ingestion, like transformation. Once data is placed into the lake, it’s available for analysis by everyone in the organization.”

Essentially, data that has been collected and stored in a data lake repository remains in the state it was gathered and is available to anyone, versus being structured, tagged with metadata, and having limited access.

That is a critical distinction and can make the data far more valuable, because the volume and variety will allow more cross-fertilization and serendipitous discovery.

At the same time, it’s also possible to “drown” in so much data, so C-level management must create new, deft policies – to serve as lifeguards, as it were. They must govern data lake access if we are to, on one hand, avoid drowning due to the sheer volume of data, and, on the other, to capitalize on its full value:

  • Senior management must resist the temptation to analyze the data first and then pass on only what they deem of value. They too will have a crack at the analysis, but the value of real-time data is getting it when it can still be acted on in the moment, rather than just in historical analyses (BTW, that’s not to say historical perspective won’t have value going forward: it will still provide valuable perspective).
  • There will need to be limits to data access, but they must be commonsense ones. For example, production line workers won’t need access to marketing data, just real-time data from the factory floor.
  • Perhaps most important, access shouldn’t be limited based on pre-conceptions of what might be relevant to a given function or department. For example, a prototype vending machine uses Near Field Communication to learn customers’ preferences over time, then offers them special deals based on those choices. However, by thinking inclusively about data from the machine, rather than just limiting access to the marketing department, the company shared the real-time information with its distribution network, so trucks were automatically rerouted to resupply machines that were running low due to factors such as summer heat.
  • Similarly, they will have to relax arbitrary boundaries between departments to encourage mutually-beneficial collaboration. When multiple departments not only share but also get to discuss the same data set, undoubtedly synergies will emerge among them (such as the vending machine ones) that no one department could have discovered on its own.
  • They will need to challenge their analytics software suppliers to create new software and dashboards specifically designed to make such a wide range of data easily digested and actionable.

Make no mistake about it: the simple creation of vast data lakes won’t automatically cure companies’ varied problems. But C-level managers who realize that if they are willing to give up control over data flow, real-time sharing of real-time data can create possibilities that were impossible to visualize in the past, will make data lakes safe, navigable – and profitable.

Another Personal IoT Story: my next car will have auto braking

Posted on 16th January 2015 in automotive, Essential Truths, transportation

Sorry to burden you with another personal Internet of Things story, especially since this one’s nowhere near as nice as how car_crashsmart sockets made peace in my house!

For the second time in less than a month, I was hit by a deer at night on Rt. 27 in Medfield, MA. If you know our area, its in the outer suburbs, and plagued by deer, who are mating at this time of year, and are absolutely nuts. Two hours later, I’m still shaking, and extremely lucky to have escaped a serious injury.

I don’t know if  it would have avoided a collision, because they were running sooo fast, but you can be sure that my next car with be a smart one, with sensors and an automatic braking system like the ones on TMercedes, BMWs and high-end Hyundai‘s.  Here’s something where the smart version wouldn’t just simplify something, but would observe one of my “Essential Truths” of the IoT, “what can you do now that you couldn’t do before.”

No driver who was focused on the road ahead could have possibly seen these deer rushing out of the pitch-black woods on the other side of the road (or, if he did, he would have crashed into something else because of taking his eyes off the road), but a motion-sensor coupled to the brakes would have detected motion in time to apply the brakes and maybe avoid the crash.

Tonight was one of the most traumatic events of my life, between the accident and the first time I’ve ever heard a gunshot up close, as the police put the doe out of her misery. If I can invest in IoT technology to avoid it happening again, I’ll be at the head of the line!

Cree Connected Bulb 1st Truly Affordable IoT Device

Cree Connected LED bulb

Not absolutely certain on this, but I’m pretty sure the new Cree Connected Bulb is an important landmark in the evolution of the consumer Internet of Things — the first really affordable home IoT device.

The bulb, soon to be available at Home Depot and online sources, will be priced at $15, according to a very favorable C|Net review.

When you consider that the average LED bulb will last more than 20 years and uses about 20% of the electricity that an equivalent incandescent does, that’s really a breakthrough — and could make a dent in electrical use (see my post about how the WeMo socket allows me to meet my wife’s desire for lights on when she gets home while I can save electricity) as part of smart grid strategies that’s even more important with the growing concern about global warming.

You’d need a $50 Wink hub, but just do the math:  a HUE kit, with a hub and three 60-watt equivalent bulbs, costs $199, as compared to $95 for the Cree/Wink equivalent. Of course, there is a major difference: the Cree bulb will only be available in white, while the HUE bulb can create 16,000 million (no, that wasn’t a typo!) light combinations from its built-in RBG elements.  That is very cool, but when you think about the gazillion bulbs throughout a typical house, adding additional HUE bulbs at $60 for the RBG ones or $29 for the white “Lux” ones, compared to $15 for the Cree ones, is a big difference that puts it out of reach for most of us. (BTW: Hue does have competition now, with a 10 pack of LIFX bulbs (no hub required) priced at $910).

This is exciting in its own right, but also gets one wondering whether economies of scale and/or new market entrants may mean more affordable alternatives to the $250 Nest thermostat and August deadbolt. If and when that happens, the IoT will really be mainstream, with huge implications for both the economy and home operations!